UNIVERSITY OF KERALA

FIRST DEGREE PROGRAMME UNDER CBCSS

REVISED SCHEME AND SYLLABI IN OUTCOME-BASED EDUCATION MODE

OF

COMPLEMENTARY STATISTICS FOR BSc PSYCHOLOGY

(with effect from 2022 Admission)

The goal of the syllabus is that students understand Statistics by using its methods effectively in real life situations. It is aimed that students have experience of the application of statistical methods to analyse data and get acquainted with situations where statistical thinking is helpful. Emphasis is given to practical data collection and use statistical tools to analyse them. Numerical problem solving using scientific calculators is also included in the ESE of courses I, II, III and IV. ESE of Courses I, II, III & IV will be of 3 hours duration and have questions from all modules. Courses I & II will be of 2 credits each and Courses III & IV will be of 3 credits each.

Course Structure:

Sem	Title of the Course	Hrs/ Week	No. of Credits	Total Hrs/Se	ESE Duration	Evaluation weightage CE ESE	
	GT1121 5 G 1		_	m			
I	ST1131.5: Statistical	3	2	54	3hrs	20%	80%
	Methods for Psychology I						
TT	ST1231.5:Statistical	3	2	54	21	200/	000/
II	Methods for	3	2	34	3hrs	20%	80%
	Psychology II						
III	ST1331.5:Statistical	3	3	54	3hrs	20%	80%
	Methods for						
	Psychology III						
IV	ST1431.5:Statistical	3	3	54	3hrs	20%	80%
	Methods for						23,0
	Psychology IV						

SEMESTER: I

COURSE CODE: ST 1131.5

COURSE TITLE: STATISTICAL METHODS FOR PSYCHOLOGY I

Course outcomes:

On completion of the course, the students should be able to:

- CO.1: Explain the importance and functions of Statistics.
- CO.2: Explain the concept of linear equations, ratios and theory of indices
- CO.3: Describe different variables of measurements and scaling techniques.
- CO.4: Explain different data types primary and secondary data, different methods of primary data collection.
- CO.5: Explain the concept of census and sampling, different sampling techniques.
- CO.6: Design questionnaires and carry out surveys.
- CO.7: Describe different methods of classification of data and present raw data using frequency tables as well as appropriate diagrams and graphs

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
	MO1.1 Describe meaning, importance and functions of	Understand
MODULE 1	Statistics.	
MODULE I	MO 1.2 Discuss the concept of linear equations, theory of	Understand
	indices and ratios	
	MO 1.3 Describe different variables of measurements -	Understand
	qualitative, quantitative, discrete and continuous	
	MO 1.4 Define different scaling techniques-nominal, ordinal,	Remember
	interval and ratio scales	
	MO 2.1 Explain different data types - primary and secondary	Understand
	data and distinguish between the two.	

	MO 2.2 Describe different methods of collecting primary data.	Understand
MODULE 2	MO 2.3 Explain sources of secondary data, precaution in the use of secondary data.	Understand
	MO 2.4 Prepare questionnaire and test reliability, validity and objectivity of it.	Apply
	MO 3.1 Compare census and sampling methods	Understand
MODINE 2	MO 3.2 Explain advantages of sampling over census	Understand
MODULE 3	MO 3.3 Distinguish between random and non-random sampling	Understand
	methods	
	MO3.4 Define simple random sampling, stratified sampling,	Remember
	systematic sampling, multi- stage sampling and cluster	
	sampling	
	MO 3.5 Explain merits and demerits of different sampling	Understand
	models.	
	MO 4.1 Describe different methods of classification	Understand
MODULE 4	MO 4.2 Prepare discrete and continuous frequency tables	Apply
	MO 4.3 Define class limits, class boundaries and class mark.	Remember
	MO4.4 Prepare cumulative frequency tables and cumulative	Apply
	percentage frequency tables	
	MO 5.1 Explain different diagrammatic representations of data	Understand
MODULE 5	like one-dimensional, two-dimensional, three-dimensional,	
WODELE 3	pictograms and cartograms	
	MO 5.2 Sketch different diagrams like bar diagrams, pie	Apply
	diagrams	- 788*)
	MO 5.3 Visualise frequency distributions using histogram,	Apply
	frequency polygon, frequency curves and ogives.	

Course Content

Module I

Meaning of Statistics, Functions of Statistics, Need and Importance of Statistics in Psychology. Limitations of Statistics.

Prerequisites for studying Statistics - Essential Mathematical fundamentals - solving linear equations, Theory of indices, Ratios.

Types of variables employed in measurements – discrete and continuous variable, quantitative variables. Scale of measurement Nominal scale, Ordinal scale, Interval scale, Ratio scale with suitable examples from Psychological data.

Module II

Collection of Data: Primary data and secondary data, Choice between primary and secondary data. Methods of collecting primary data, merits and demerits of different methods of collecting primary data, Sources of secondary data, Precaution in the use of secondary data. Testing reliability, validity and objectivity of questionnaire.

Module III

Census and sampling method. Methods of sampling – Random sampling and Non-random sampling, Stratified sampling, systematic sampling, Multi stage sampling, Cluster sampling. Selection of appropriate sampling method, Merits and demerits of different sampling methods.

Module IV

Classification and Tabulation: Meaning and objective of classification, Type of classification- geographical classification, Chronological classification, quantitative classification.

Tabulation of data, Formation of discrete and continuous frequency distribution. Class limits, class boundaries, class mark, raw data, ungrouped and grouped data. Cumulative frequency distribution, cumulative percentage frequency distribution

Module V

Diagrammatic Representations - Bar diagrams, types of Bar diagrams, Pie diagram, Pictograms and cartograms. Graphical representations: Histogram, Frequency polygon, frequency curve, Ogives.

References:

- 1. Aron A, Aron R & Coups E J (2006). *Statistics for Psychology* (4thed), Pearson Education, New Delhi .
- 2. Garret E Henry (2004). *Statistics in Psychology and Education* (11thed), Paragon International Publishers, New Delhi.
- 3. Gravetter, F J & Wallnau L B (2000). *Statistics for Behavioral Science* (5thed), Wadsworth-Thomson learning Singapore
- 4. Heiman W Carry (2000). *Basic Statistics for Behavioral Science* (3rd ed.), Houghton Mifflin Company, New York
- 5. Mangal S K (2000). *Statistics in Psychology and Education* (2nd ed.), Prentice_Hall of India Private Limited, New Delhi
- 6. Minium W Edward, King M Bruce & Bear Gardon (2001). *Statistical Reasoning in Psychology and Education* (3rded), John Wiley & Sons, New York
- 7. Yule Undy G & Kendal M G (1991). *An Introduction to Theory of Statistics* (14thed.) Universal Book Stall, New Delhi.

SEMESTER: II COURSE CODE: ST 1231.5 COURSE TITLE: STATISTICAL METHODS FOR PSYCHOLOGY II

Course outcomes

On completion of the course, the students should be able to:

- CO.1: Explain central tendency and properties of good averages
- CO.2: Calculate mean, median and mode
- CO. 3: Identify median and mode graphically
- CO. 4: Calculate percentiles, percentile ranks, quartiles and deciles
- CO. 5: Calculate Range, Mean deviation, Quartile deviation and standard deviation.
- CO. 6: Compare different measures of variability.
- CO. 7: Calculate Karl Pearson's measure of skewness, Bowley's coefficient of skewness and measure of kurtosis.

CO. 8: Calculate probabilities associated with simple numerical problems using classical definition and addition theorem of probability.

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
	MO 1.1 Explain central tendency	Understand
N. 1 1 1	MO 1.2 Explain the properties of a good average	Understand
Module 1	MO 1.3 Calculate arithmetic mean, median and mode.	Apply
	MO 1.4 Determine median and mode graphically	Apply
	MO 2.1 Calculate percentiles, percentile rank	Apply
Module 2	MO 2.2 Calculate quartiles and deciles	Apply
	MO 3.1 Explain variability	Understand
M- 1-1- 2	MO 3.2 Explain properties of a good measure of variability	Understand
Module 3	MO 3.3 Calculate Range, Mean deviation, Quartile deviation	Apply
	and standard deviation	
	MO 3.4 Compare different measures of variability.	Analyse
	MO 3.5 Calculate coefficient of range, coefficient of quartile	
	deviation and coefficient of variation	Apply
	MO 4.1 Explain Skewness and Kurtosis.	Understand
M - 1-1- 4	MO 4.2. Calculate Karl Pearson's measure of skewness,	Apply
Module 4	Bowley's coefficient of skewness and measures of kurtosis for	
	raw data (Moment measures of skewness and kurtosis not	
	required)	
	MO 5.1 Explain concepts of set theory and set operations	Understand
	MO 5.2 Explain elementary concepts of probability, random	

	experiment, sample space and events.	Understand
Module 5	MO 5.3 Make use of classical definition of probability and addition theorem (2 events) to calculate probabilities associated with simple numerical problems	Apply

Course content

MODULE I

Meaning and importance of measures of central tendency, Properties of a good average, simple arithmetic mean, mean and weighted mean, arithmetic mean, computation of arithmetic mean for raw, ungrouped and grouped data. Computation of median from raw, ungrouped and grouped data. Computation of mode from raw, ungrouped and grouped data. Graphical determination of median and mode, when to use mean, median and mode.

MODULE II

Percentiles, quartiles and deciles. Computation of percentiles, quartiles and deciles. Percentile rank: definition, computation and utility of percentile and percentile rank.

MODULE III

Meaning and importance the measure of variability, properties of good measure of variability. Range, Mean deviation, Quartile deviation, standard deviation: computation and use. Comparison of different measures of variability. Relative measure of variation-coefficient of range, coefficient of quartile deviation, coefficient of variation, computation and use, when to use various measures of variability.

MODULE IV

Skewness – definition, measures of skewness – Karl Pearson's coefficient of skewness, Bowley's coefficient of skewness. Kurtosis, measures of kurtosis. Simple numerical problems for raw data only. (Moment measures of skewness and kurtosis not required).

MODULE V

Basic concepts of set theory, set operations, probability – random experiment, sample space, event, different types of events. Classical and frequency definition of probability. Addition theorem, independent of events, simple problems.

References:

- 1. Aron A, Aron R & Coups E J (2006). *Statistics for Psychology* (4thed), Pearson Education, New Delhi .
- 2. Garret E Henry (2004). *Statistics in Psychology and Education* (11thed), Paragon International Publishers, New Delhi.
- 3. Gravetter, F J & Wallnau L B (2000). *Statistics for Behavioral Science* (5thed), Wadsworth-Thomson learning Singapore
- 4. Heiman W Carry (2000). *Basic Statistics for Behavioral Science* (3rd ed.), Houghton Mifflin Company, New York
- 5. Mangal S K (2000). *Statistics in Psychology and Education* (2nd ed.), Prentice_Hall of India Private Limited, New Delhi
- 6. Minium W Edward, King M Bruce & Bear Gardon (2001). *Statistical Reasoning in Psychology and Education* (3rded), John Wiley & Sons, New York
- 7. Yule Undy G & Kendal M G (1991). *An Introduction to Theory of Statistics* (14thed.) Universal Book Stall, New Delhi.

SEMESTER: III

COURSE CODE: ST 1331.5

COURSE TITLE: STATISTICAL METHODS FOR PSYCHOLOGY III

Course outcomes

On completion of the course, the students should be able to:

- CO.1: Explain the concept of correlation and different methods of finding correlation like scatter diagram, correlation coefficient.
- CO.2: Describe properties of correlation coefficient and solve numerical problems.
- CO.3: Describe concept of regression analysis, properties of regression coefficients
- CO.4: Explain the concept of association, dissociation and independence of attributes.
- CO.5: Describe the concept of random variables-both discrete and continuous, basic concepts and definitions of probability density function and distribution function.

CO.6: Define standard distributions - Binomial and Poisson distributions and derive mean and variance

CO.7: Explain normal probability curve and its characteristics .

CO.8: Compare standard scores like z-score, t-score and stanine score.

Sl. No:	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
	MO1.1 Describe the significance of correlation.	Understand
MODULE 1	MO 1.2 Define different types of correlation like linear, non-	
MODULE I	linear, direct, inverse.	Remember
	MO 1.3Explain correlation using scatter diagram	
	MO 1.4 Define Pearson's correlation coefficient and describe	Understand
	its properties.	Understand
	MO 1.5Calculate Pearson's correlation coefficient and	
	Spearman's rank correlation coefficient	Apply
	MO 2.1 Explain the concept of regression equations.	Understand
MODULE 2	MO 2.2 Derive angle between regression lines.	Understand
WIODULE 2	MO 2.3 Describe properties of regression coefficients.	Understand
	MO 2.4 Derive relation between correlation coefficient and	Apply
	regression coefficients	
	MO 2.5 Explain regression and prediction	Apply
	MO 3.1 Describe the concept of association, dissociation,	Understand
MODULE 3	•	
	•	Understand
		Understand
	_	
	MO 3.4 Solve simple numerical problems on association	Apply
	MO 4.1 Define random variables-discrete and continuous	Remember
MODULE 3	independence of attributes and consistency of data MO 3.2 Compare correlation and association MO 3.3 Describe different methods of studying association like coefficient of association and coefficient of colligation MO 3.4 Solve simple numerical problems on association MO 4.1 Define random variables-discrete and continuous	Understa Apply

	MO 4.2 Explain the concept and properties of probability	
MODULE 4	density function and distribution function.	Understand
Medell 1	MO 4.3Solve simple problems of discrete random variables	Apply
	MO 4.4 Define Binomial and Poisson distributions.	Remember
	MO 4.5 Derive mean and variance of Binomial and Poisson distributions	Understand
	MO 4.6 Solve simple numerical problems of Binomial and	Apply
	Poisson distributions	
	MO 5.1 Define Normal curve in terms of skewness and kurtosis	Remember
MODULE 5	MO 5.2 Describe the characteristics of normal curve	Understand
	MO 5.3 Solve numerical problems using Normal tables.	Apply
	MO 5.4 Define standard errors of measurement.	Remember
	MO5.5 Define Standard scores – Z-score, T-Score, Stanine score.	Remember

Course content

Module I

Correlation Analysis - Significance of the study of correlation, Types of correlation- Linear, Nonlinear correlation, Direct and inverse. Methods of studying correlation: Scatter diagram method, Karl Pearson's coefficient of correlation, Properties of coefficient of correlation, Spearman's rank correlation coefficient (No derivations). Numerical problems

Module II

Significance of the study of regression, difference between correlation and regression analysis. Regression equations - Regression equation of Y on X, Regression equation of X on Y. Regression coefficients, Properties of regression coefficients, Relation between correlation coefficient and regression coefficients. Regression and prediction.

Module III

Difference between Correlation and Association, Consistency of data, Association and Disassociation, Methods of studying Association: Yule's coefficient of association, Coefficient of colligation. Simple numerical problems

Module IV

Random variable, Discrete and continuous random variable, Probability mass function, probability density function, Probability Distributions- Basic concepts, definitions and properties. Problems on discrete random variables. Standard distributions: Binomial, Poisson-definition, Derivation of mean and variance only. simple problems.

Module V

Normal curve – in terms of skewness and kurtosis, Characteristics and applications. Use of the table of Normal curve, Examples of applications of the normal curve. Concept of standard errors of measurement. Standard scores – Z-score, T-Score, Stanine score, Converting raw scores into comparable standard normalized scores.

References:

- 1. Aron A, Aron R & Coups E J (2006). *Statistics for Psychology* (4thed), Pearson Education, New Delhi .
- 2. Garret E Henry (2004). *Statistics in Psychology and Education* (11thed), Paragon International Publishers, New Delhi.
- 3. Gravetter, F J & Wallnau L B (2000). *Statistics for Behavioral Science* (5thed), Wadsworth-Thomson learning Singapore
- 4. Heiman W Carry (2000). *Basic Statistics for Behavioral Science* (3rd ed.), Houghton Mifflin Company, New York
- 5. Mangal S K (2000). *Statistics in Psychology and Education* (2nd ed.), Prentice_Hall of India Private Limited, New Delhi
- 6. Minium W Edward, King M Bruce & Bear Gardon (2001). *Statistical Reasoning in Psychology and Education* (3rded), John Wiley & Sons, New York
- 7. Yule Undy G & Kendal M G (1991). *An Introduction to Theory of Statistics* (14thed.) Universal Book Stall, New Delhi.

SEMESTER: IV COURSE CODE: ST 1431.5 COURSE TITLE: STATISTICAL METHODS FOR PSYCHOLOGY IV

Course outcomes

On completion of the course, the students should be able to:

CO.1: Define parameter, statistic, standard error, sampling distributions.

- CO.2: Explain chi-square, student's-t and F-statistics and inter relationship between chi-square, t and F distributions.
- CO. 3: Make use of tables of student's t, chi square and F distributions.
- CO. 4: Calculate interval estimators for mean of normal population
- CO. 5: Calculate interval estimators in numerical problems associated with mean of Normal distribution.
- CO. 6: Carry out some parametric and non parametric tests of hypothesis.

MODULE OUTCOME

SL. NO	Outcomes	Taxonomy
	On completion of each module, students should be able to:	Level
	MO 1.1 Define parameter, statistic, standard error,	Remember
Module 1	sampling distributions, Standard error of sample	
	mean	
	MO 1.2 Explain chi-square, student's-t and F-statistics and	Understand
	inter relationship between chi-square, t and F	Chacistana
	distributions.	Apply
	MO 1.3 Make use of tables of chi square t and F	
	distributions.	Understand
	MO 1.4 Explain basic concepts of point and interval estimation	
	MO 1.5 Calculate interval estimators in numerical problems associated with mean of Normal distribution.	Apply
26.11.0	MO 2.1 Explain the basic concepts of testing of statistical	Understand
Module 2	hypothesis	
	MO 2.2 Calculate size and power of test in simple	Apply
	problems on discrete cases.	
)	MO 3.1 Carry out large sample tests of significance of	Apply
Module 3	mean, proportion, difference between two means and	
	difference between two proportions.	
	MO 3.2 Carry out chi square tests of independence of	Apply
	attributes and goodness of fit.	11-7
		1

	MO 3.3 Define coefficient of contingency	Remember
Module 4	MO 4.1 Carry out small sample tests of the significance of mean and difference between two means in normal	Apply
	population(s) MO 4.2 Carry out paired t test	Apply
	MO 4.3 Carry out test for significance of correlation coefficient.	Apply
Module 5	MO 5.1 Explain non- parametric tests	Understand
1,10da10	MO 5.2 Carry out sign test, Wilcoxon's matched pair	
	signed rank test, Wald-Wolfowitz run test, Mc-Nemar test	Apply

Course content

Module I

Statistical inference: Parameter, statistic, standard error, sampling distributions, sampling distribution of sample mean (without proof), chi-square, student's-t, F-statistics-definitions, inter relationship between chi-square, t and F statistics, Estimation theory-point and interval estimation (basic concepts, definition only), interval estimation problems based on Normal and t distributions.

Module II

Testing of hypothesis: Procedure of testing of hypothesis, Null and alternative hypothesis, Two types of errors, significance level, power of test, P value, Two tailed and one tailed tests of significance, simple problem on discrete case only.

Module III

Large sample tests: testing the significance of mean, testing the significance of difference between two means, testing significance of proportion, testing significance of difference between two proportions. Chi-square tests- testing independence of attributes, coefficient of contingency, testing of goodness of fit.

Module IV

Small sample tests: testing the significance of mean of normal distribution, testing the significance of difference between means of two normal populations, paired-t tests, testing correlation coefficient.

Module V

Non- parametric tests: when to use parametric and non- parametric tests, Sign test, Wilcoxon's matched pair signed rank test, Wald-Wolfowitz Run test, Mc-Nemer test, Simple problems (for problems table value to be provided in the question paper).

References:

- 1. Aron A, Aron R & Coups E J (2006). *Statistics for Psychology* (4thed), Pearson Education, New Delhi .
- 2. Garret E Henry (2004). *Statistics in Psychology and Education* (11thed), Paragon International Publishers, New Delhi.
- 3. Gravetter, F J & Wallnau L B (2000). *Statistics for Behavioral Science* (5thed), Wadsworth-Thomson learning Singapore
- 4. Heiman W Carry (2000). *Basic Statistics for Behavioral Science* (3rd ed.), Houghton Mifflin Company, New York
- 5. Mangal S K (2000). *Statistics in Psychology and Education* (2nd ed.), Prentice_Hall of India Private Limited, New Delhi
- 6. Minium W Edward, King M Bruce & Bear Gardon (2001). *Statistical Reasoning in Psychology and Education* (3rded), John Wiley & Sons ,New York
- 7. Yule Undy G & Kendal M G (1991). *An Introduction to Theory of Statistics* (14thed.) Universal Book Stall, New Delhi.